图灵完备
这是图灵完备的第一章基础电路的第五关——或非门NOR
本关要求
本关要求我们使用与非门NAND和非门NOT来构建一个或非门NOR。 因此,这一关实际上是让我们理解什么是或非门NOR。
或非门NOR说明
或非NOR操作是一个二元操作,当两个输入信号都为低电平0时,输出信号为高电平1,其余状态下输出为低电平0。 其逻辑表达式为:
或非门NOR的真值表如下:
A | B | result |
---|---|---|
0 | 0 | 1 |
0 | 1 | 0 |
1 | 0 | 0 |
1 | 1 | 0 |
解法
我们需要使用与非门NAND和非门NOT来构建一个或非门NOR。在这里就需要利用摩根定律。 摩根定律如下:
证明这个定律可以尝试写一下方程两边计算式的真值表并进行比较。
通过摩根定律,我们就可以将或非门NOR操作转换成与操作,方法是首先将两个输入信号分别用两个非门NOT取反,然后对取反后的结果连接在一个与门AND上(而与门AND由一个与非门NAND和一个非门NOT构成)。